
Copyright 2017

OSCARTech Compiler

1

Copyright 2017

Overview: “OSCARTech® Compiler”

2

The OSCARTech® Compiler…
• accepts sequential programs written in

C language,
• features the proprietary OSCAR multi-grain

parallelization algorithms, and
• automatically generates parallel and

power-saving C code.

Copyright 2017

Differentiations of the OSCARTech® Compiler

Multi-grain
parallelization

Operating power
reduction

Multi target
platform

Automatic
profiling

Local memory
optimization

Fast
synchronization

Visualization of
the parallelism

3

Copyright 2017

Development Env. w/ OSCARTech® Compiler

4

Development env. w/
OSCARTech® Compiler

C code

object

OSCARTech®

Compiler

Parallelized
C code

existing compiler
translates the program into
object by existing compiler

takes input program written in C

outputs program written in C

parallelizes the code
automatically

lowers the power consumption

Copyright 2017

Multi-grain parallelization (1)

5

Automatic parallelization

near fine grain
parallelization

middle grain
parallelization

coarse grain
parallelization

Classification according to granularity

parallelization of for-loops

parallelization of higher-level program segments

Microsoft: VC++
Intel: Intel Compiler
GNU: GNU Compiler (GCC)

etc.

OSCARTech® Compiler
supports all granularity of

the parallelism.

parallelization of each statement

Multi-grain parallelization

Copyright 2017

• Parallelization of for-loops, and at the same time

• Parallelization of higher-level program segments (macro tasks)

Scope of the Multi-grain parallelization
= whole program

Multi-grain parallelization (2)

Scope of other
parallelizing compilers

Parallelizable
loop

Unparalleliz-
able loop

Basic block
A

Function call
B

Basic block
B

Function call
A

6

Copyright 2017

Multi-grain parallelization (3)

Basic
block B

Paralleliz-
able loop

time

small gain

larger gain

Sequential
Other compilers’
parallelization

Multi-grain
parallelization

Core 0 Core 0 Core 1 Core 0 Core 1

Paralleliz-
able loop

Unparalleliz-
able loop

Paralleliz-
able loop

Function
call B

Basic
block A

Basic
block A

Function
call A

Paralleliz-
able loop

Basic
block B

Unparalleliz-
able loop

Function
call B

Basic
block A

Function
call A

Paralleliz-
able loop

Basic
block B

Unparalleliz-
able loop

Function
call B

Function
call A

7

no dependency:
➔ execute in

parallel

Idle

Idle

Idle

Copyright 2017

How the OSCARTech® Compiler
parallelizes a program

8

main()

{

if(..){

func0();

} else {

func1();

}

}

① Partition the
whole program

Basic
block A

Function
A

Paralleliz-
able loop

Basic
block B

Un-
paralleliz-
able loop

Function
B

② Analyze
dependencies

Basic
block A

Function
A

Un-
paralleliz-
able loop

Paralleliz-
able loop

Basic
block B

Function
B

④ Assign parts
to cores

Basic
block A

Un-
paralleliz-
able loop

Paralleliz-
able loop

Paralleliz-
able loop

Function
A

Basic
block B

Function
B

Core 0 Core 1

③ Estimate
execution time

Basic
block A

Function
A

Un-
paralleliz-
able loop

Paralleliz-
able loop

Basic
block B

Function
B

• Analyze both
control and data
dependencies
among all parts.

• Analyze pointers
and array indices.

• Statically estimate
the execution time
of each part.

• Use dynamic
profiling for more
precise estimation.

• Assign each part to
the optimum core,
considering the
execution time,
synchronization cost
and data transfer
cost.

• Analyze the lexicon
and the structure of
the original C code.

• Recursively analyze
for loop or function
structures.

Original
C code

Idle

Copyright 2017

Visualization of the parallelism

• Macro Task Graph (MTG)

9

: Basic block

: Loop

: Function call

(A)

(B)

Macro Task Graph as produced and used by the OSCARTech® Compiler:
lines represent dependencies, e.g., (A) must be executed before (B)

Copyright 2017

Reduce Power Consumption
by Parallelization

MT1

MT2

MT5

MT3

MT6

MT8

MT4

MT7

MT9

Core0 Core1 Core2 Core0 Core1 Core2

MT1

MT2

MT5
(clock down)

MT3
(clock down)

MT6

MT8

MT4

MT7

MT9

deadline margin
Clock
gating

Power
gating

Clock
gating

Clock
gating

Macro tasks (MT) scheduled for
fastest execution at fixed frequency

Power-aware scheduling using power gating
and dynamic frequency/voltage scaling

Execution
Time

10

Execution
Time

parallelize
software

gain margin
on deadline

reduce clock
frequency &
gate power

save energy

Time
gating

Copyright 2017

Outcome of the OSCARTech®

Compiler power reduction
• Power consumption of the MPEG2 decoder on ARM

Cortex-A9 Quad-core device

11

ODROID-X2
ARM Cortex-A9 Quad-core

P
o

w
e

r
co

n
su

m
p

ti
o

n
 [

W
]

Copyright 2017

OSCARTech® Compiler for
Model-Based Design/Development

12

C code

OSCARTech®

Compiler

Parallelized
C code

existing compiler

MATLAB/Simulink

Embedded Coder
Simulink Coder

object

manual or S-Function Builder

OSCARTech® Compiler
can parallelize the
output of Simulink.

The parallelized code can
be restored to Simulink as

an S-Function block.

The parallelized code can be
executed on PC/servers or

on ECUs.

Copyright 2017

Benchmark of the OSCARTech®

Compiler parallelization

0

1

2

3

4

5

6

7

8

9

to
m

c
a
tv

s
w

im

s
u

2
c
o

r

h
y

d
r
o

2
d

m
g

r
id

a
p

p
lu

tu
r
b

3
d

a
p

s
i

f
p

p
p

p

w
a
v

e
5

s
w

im

m
g

r
id

a
p

p
lu

a
p

s
i

SPEC95 SPEC2000

s
p

e
e
d

u
p

 r
a
ti

o

Intel Ver.10.1

OSCAR

2.1 times faster

13

vs. Intel Compiler on Intel’s quad
core Xeon processor

vs. IBM Compiler on IBM’s 32-core
SMP server (IBM Power 595, Power6
processor)

3.3 times faster

Copyright 2017

Our Business:
OSCARTech® Compiler Licensing

14

Oscar Technology Corporation can
license OSCARTech® Compiler to

customers.

OSCARTech® Compiler:
generates parallel and power-controlled C code

➔ higher execution speed
➔ lower power consumption

